

Detailed study of two debris disks seen by Herschel

Jérémy Lebreton, Institut de Planétologie et d'Astrophysique de Grenoble

Jean-Charles Augereau¹, William Dent^{2,3}, Jessica Donaldson⁴, Carlos Eiroa⁵, Steve Ertel⁶, Torsten Löhne⁷, Pablo Riviere Marichalar⁸, Jonathan Marshall⁵, Geoff Mathews⁹, Francois Ménard¹, Sebastian Müller⁷,

Christophe Pinte¹, Aki Roberge⁴, Glenn Schneider¹⁰, Wing-Fai Thi³, and the GASPS and DUNES teams ¹IPAG Grenoble, ²UKATC, ³ALMA JAO, ⁴NASA Goddard, ³Dept. Fisica Teorica UAM Madrid, ⁴Inst. für Theoretische Physik und Astroph. Kiel, ⁷Astrophysical Institute, Jena University, 8LAEX-CAB / INTA-CSIC, ⁹U. of Hawaii, ⁴⁰University of Arizona

INTRODUCTION: To draw a complete picture of planetary systems as a whole, one needs to study all their constituents, from the largest gas giant planets to the smallest dust particles left behind after their formation, or reproduced by collisions. These so-called debris disk represent large reservoirs of material way beyond the snow-line, that may impact the later evolution of terrestrial planets. HD 181327 is an F5.5V member of the ß Pic moving group (~12 Myr) located 51.8 pc away. Its far-IR excess (L_p/L_ ~ 0.2%) and recently resolved images reveal an optically thin belt of circumstellar material, presumed to result from collisions in a population of unseen planetesimals. As part of the GASPS open time key project, we obtained Herschel/PACS far-IR photometric and spectroscopic observations. Together with newly reduced HST scattered light images they provide the necessary measurements for an advanced analysis of the dust grains, that we complete with predictions on the gas content. Our study suggests that HD 181327 is prototypical of a star located at the end of the transition between gas-rich protoplanetary disks, to gas-poor debris disks, q1 Eridani (HD 10647) is a much older F8V system ("1Gyr), known to host a jupiter-mass RV planet at 2 AU. We obtained new PACS resolved images of the q1 Eri disk, as part of the DUNES project, giving unprecedented information on the thermal emission of the cold dust surrounding the star. We developed a consistent modelling approach that provides clues on the possible interaction between the disk and hidden planets.

GASPS

GASPS: Detailed modelling of the HD 181327 debris disk

The Gas in Protoplanetary Systems (GASPS) Open Time Key Programme is the first extensive, systematic survey of gas in circumstellar disks over the critical transition from gas-rich protoplanetary disks to gas-poor debris disks.

HERSCHEL/PACS observations

HD 181327 was observed in the 3 PACS photometric bands (70, 100 and 160 µm) in chop-nod mode and calibrated with HIPE v4.2. The disk is marginally resolved showing extended emission at 70 um (left: PACS 70 um image, middle: PSF reference star, right; azimuthally averaged radial profiles for both stars, with Gaussian fits overlaid).

Line scan spectroscopy targeting [OI] at 63 µm and range scan spectroscopy targeting [CII] at 158 µm and [OI] at 145 µm were performed with no emission lines detected at the 3o detection sensitivity (see table on the right).

Dust models

NICMOS scattered light brightness profile (Schneider et al. in prep.) to constrain the disk geometry. Knowing the disk's radial density profile allows a detailed study of the dust grain properties: we use the GRaTer code (AUGEREAU et al. 1999) to compute a grid of models and we apply a bayesian analysis to fit the dust Spectral Energy Distribution (SED) and derive precise constraints on the grain size distribution and

• We make a direct inversion of new HST/ • We show that simple grain compositions (icy silicates, porous silicates, etc.) fail at reproducing the observed SED from near-IR to sub-mm wavelengths. More sophisticated grain models are required, namely a mixture of porous (P = 63±21%) silicate + organic refractory grains (we fix $v_c = 2 v_{si}$), and amorphous water ice ($v_{ice} = 0.67\pm0.07$), to find an overall good fit to the observations. Assuming a single grain size distribution: n(a) \propto a^{-*} for grains larger than a_{min} and smaller than 8 mm, we find $a_{min} = 0.81\pm0.31 \ \mu m$ and $\kappa = -3.41\pm0.09$, leading to a total mass M_{dust} = 0.051±0.016 M_{earth} up to 1 mm. The overall results agree well with previously modeled debris disks such as β Pictoris, HD 141569A or HR 4796.

Gas disk modelling

01 [63]

(W/m²

2.9 e-18

8.3 e-19

2.1 e-18

2.4e-18

 $PACS(1\sigma) < 3.27 e-18$

G/D

1000

100

10

The dust model was injected in the advanced thermochemical

disk modelling code ProDiMo (WOITKE, KAMP, & THI 2009) to

predict flux ratios in the OI, CII and CO (3-2) lines and derive a

limit for the gas-to-dust (G/D) ratio in the disk, but the non-

detections of OI and CII do not provide unambiguous

constraints. However, coupling with other tracers, e.g. CO lines, offers a hope to put much better limits on the low gas

CII [158]

(W/m²)

2.6 e-20

5.3 e-20

2.2 e-19

6.2 e-19

< 2.83e-18 < 2.66 e-18

CO (3-2)

(W/m²)

1.7 e-19

1.6 e-19

1.3 e-19

3.4 e-22

OI [145]

(W/m²)

1.60 e-18

1.6 e-20

8.2 e-21

4.0 e-20

content of debris disks, with ALMA for instance.

DUNES: A Kuiper-like belt around the planet-host star q¹ Eri

The Dust around NEarby Stars (DUNES) key program is performing a deep and systematic survey for faint, cold debris disks down to « Kuiper Belt » sentivity level $(L_{dust}/L_* \sim 10^{-7})$

THE STAR •Spectral type: F8 •Distance : 17.4 pc •Age : ~2 Gyr

•M sin i: 0.93 M_{iupiter} •Semi-major axis: 2.03 AU •Eccentricity : 0.1

A JUPITER-MASS PLANET

A KUIPER-LIKE BELT

IRAS, ISO and Spitzer: cold dust, with a luminosity a few 100 times that of the Kuiper Belt ($L_{dick}/L_{star} \sim 4x10^{-4}$) Sub-mm APEX/LABOCA images: disk extent is up to several tens of arcsec (LISEAU et al. 2008). HST images suggest a peak at 83AU (4.8", STAPELFELDT et al., in prep.)

Detailed simultaneous modelling of the SED and PACS images are required to unveil the disk structure, dust properties and dynamical history and break the degeneracy between disk geometry and grains properties.

HERSCHEL/PACS observations

Disk spatially resolved at all PACS wavelengths (insets show the PSF) Disk marginally resolved along the minor axis: inclination > 55 deg

Best model for the SED AND PACS radial profiles

DUST RING GRAIN PROPERTIES Mass : 0.04 M_{Earth} Minimum grain size .. 1.5 μm

Surface density: r⁻²

Size distribution: - 3.5 power law index

IPAG

nstitut de Planétologie

et d'Astrophysiqu de Grenobi

Belt peak position: 75-80AU
Close to 50-50 silicate-ice mixture

Evidences for more planets?

- Possible asymmetry between the two sides
- · Collisional models predict an initial dust mass of ~1000 M_{earth} (if the star is 2 Gyr), leading to 0.4M_{sun} for the whole protoplanetary disk. This could be reduced to ~100 M_{earth} if the disk is 0.5Gyr , or be an evidence for delayed stirring by unseen inner planets.

Deconvolution with the MCS algorithm (MAGAIN, COURBIN & SOHY 1998, ApJ 494, 472)