Presented at the Earth Science Technology Conference 2003 University of Maryland Conference Center http://esto.nasa.gov/conferences/esto2003/

> J. Patrick Gary Network Projects Leader Earth and Space Data Computing Division/Code 930 NASA Goddard Space Flight Center pat.gary@nasa.gov 301-286-9539 June 25, 2003

<u>Outline</u>

- Motivation
- Challenge
- nuttcp Performance Testing Tool
- Evaluations in Large Bandwidth*Delay Networks
 - » Examples of Pre-2000 Efforts
 - » Examples of Current Evaluations
- Conclusion

<u>Motivation</u>

- Availability of new high-bandwidth networking technologies, e.g.:
 - » 1-10 Gigabit Ethernet switches/routers
 - » Wave division multiplexing on dark fiber
- New (and old) types of bandwidth-demanding applications, e.g.:
 - » Streaming HDTV and other real-time data over IP networks
 - » Storage Area Networks over IP networks
 - » High end computing

<u>Challenges</u>

- Network users still do not always get the throughput performance that they should get or need to get
- Common factors affecting throughput performance
 - » Bandwidth or message size limitations in intermediate links of the end-to-end network path
 - » Limitations of the hardware/software network interfaces of the end user client workstations or servers
- Appropriate evaluation environment
 - » Large-scale fielding of advanced networking technologies
 - » Effective measurement and analysis tools, plus expertise to use
 - » Real applications/users willing to risk network testbed availability

nuttcp Throughput Performance Analysis Tool

- Developed by GSFC's Bill Fink
- Determines raw TCP or UDP network layer throughput
 - » Transfers memory buffers from a source system across an interconnecting network to a destination system
 - » Transfers either a specified number of buffers or for a specified time interval, optionally with pacing or as multiple simultaneous streams
 - » Reports many statistics, including:
 - achieved network throughput in Mbps
 - user, system, and wall-clock time
 - transmitter and receiver CPU utilization
 - loss percentage (for UDP transfers)

nuttcp Throughput Performance Analysis Tool (continued)

- Recognized in SC2002 tutorial as the recommended "great successor" to ttcp
- Already in extensive use in GSFC, DREN, Supernet, and MAX networks
- Example use:

[user@transmit_host]# nuttcp -t -T10 -w512 -b receive_host 1183.125 MB / 10.01 sec = 991.7452 Mbps 82 %TX 37 %RX

ftp://ftp.lcp.nrl.navy.mil/u/bill/beta/nuttcp/

✤ GSFC <-> NRL OC-12 1 TB Challenge

http://www.nasa.atd.net/images/gsfc-nrl_oc12_1_TB.gif

NASA Goddard - BF - 3/3/98

<u>Outline</u>

- Motivation
- Challenge
- nuttcp Performance Testing Tool
- Evaluations in Large Bandwidth*Delay Networks
 - » Examples of Pre-2000 Efforts
 - » Examples of Current Evaluations
- Conclusion

GSFC Benchmark Test Script & Key Findings in TPD

- Written to check and save information on the characteristics of the link prior to each Visible Human Viewer test run
- Test Script Checks
 - » Roundtrip time (RTT) (using ping with small and large packet sizes)
 - » Router hops (traceroute with small and large packets in both directions)
 - » Transfer rates (ftp and nttcp of 7MB of data (size of largest image))

Ра <u>#</u>	th Path	<u>Via</u>	SkyX <u>Proc</u>	RTT (ms) <u>65B/1500B</u>	#Hops _> <-	ftp(Mbps) <u>15KB/7MB</u>	nttcp (Mbps) <u>7MB</u>
1	SMU-GSFC	Intelsat	Yes	1124/1127	14/14	/15.2	11.9
2	SMU-NLM	Intelsat	Yes	1127/1130	16/16	10.9/15.2	11.9
3	SMU-NLM	Intelsat	No	1127/1130	16/16	.026/.224	0.225
4	SMU-GSFC	TransPAC	No	191/224	16/14	/.817	0.732

where Intelsat is the satellite path and TransPAC is the terrestrial path

JPG 05/25/99

Schematic of Gbps e-VLBI Demonstration Experiment

e-VLBI GGAO-Haystack Data Rates Sustained During a 16-Hour-Long Evaluation Test

Max In:970.5 Mb/s (97.1%) Average In:210.8 Mb/s (21.1%) Current In:168.0 b/s (0.0%) Max Out:978.1 Mb/s (97.8%) Average Out:263.6 Mb/s (26.4%) Current Out:216.0 b/s (0.0%)

 Test configuration 	
 » Data Server: Maximum Throughput Sledgehammer S network attached storage 	H 200
 » Data Client: 867 MHz Macintosh G4 » Access Protocol: NFS v3.0 » Interconnection Network: Extreme Network Summit 51 Gigabit Etherse Switch (includes jumbo frame capability) 	nernet
 Performance (MegaBytes per second) with jumbo frames (MT rsize=8192,wsize=8192) <transmit></transmit> Receive> Min Avg Max Min Avg 38.1592 38.4785 38.8381 36.0036 44.97 	U=9000, NFS Max 74 52.7600
 Performance (MegaBytes per second) with standard frames (Irsize=1024,wsize=1024) Transmit> Nin Avg Min Avg Min Avg Min Avg Min Avg Max Min Avg A.6198 4.6387 4.6593 	MTU=1500, NFS Max 2 4.6456 J. P. Gary

<u>Conclusion</u>

- Inexpensive 1 and 10 Gbps GigE and WDM optical networking technologies can significantly enable Earth science applications
- But knowledgeable selection and use of those technologies can only be achieved through advanced network technology evaluations
- GSFC's HECN Project continues to be every successful at these advanced network technology evaluations

Acknowledgments

- Jim Fischer (GSFC), ESTO/CT Project Manager
- Bill Fink (GSFC), developer of nuttcp and technical lead on most HECN advanced technology evaluations
- Rest of the present HECN Team: Herb Durbeck (GSFC), Kevin Kranacs (GSFC), Lee Foster (GSFC), Paul Lang (ADNET), Aruna Muppalla (ADNET), Wei-Li Liu (ADNET), and Chandu Rathod (ADNET)
- Former HECN Team members: Kalyan Kidambi, Marian Stagarescu, and Sanjiv Duggal (all then RITSS)
- Jeff Martz (CSC), wiring and network equipment installation super-expert

Backup Charts

Usage (transmitter): nuttcp -t [-options] host [<in] length of network write buf (default 8192/udp, 65536/tcp) -|## don't source a pattern to network, use stdin -S number of source bufs written to network (default 2048) -n## -w## transmitter window size in KB -ws## server receive window size in KB -wb braindead Solaris 2.8 (sets both xmit and rcv windows) port number to send to (default 5001) -p## -P## port number for control connection (default 5000) use UDP instead of TCP -u don't buffer TCP writes (sets TCP_NODELAY socket option) -D number of streams (starting at port number) -N## -R## transmit rate limit in Kbps (or (mlM)bps or (glG)bps) transmit timeout interval in seconds (or (mlM)inutes) -T## -i## server interval reporting in seconds (or (mlM)inutes) -lxxx identifier for nuttcp output (max of 40 characters) flip option to reverse direction of data connection open -F -xP## set nuttcp process priority (must be root) set TCP SO_DEBUG option on data socket -d verbose output -V brief output -b

Details of the e-VLBI Network Path

For more info see ftp://web.haystack.edu/pub/e-vlbi/demo_report.pdf.

