Herschel Observations and Modeling of the HD 32297 Debris Disk

HD32297 is a bright edge-on disk

30 Myr-old debris disk

Resolved at several wavelengths

- near-IR (Schneider et al. 2005, Debes et al. 2009, Mawet et al. 2009, Currie et al. 2012, Boccaletti et al. 2012)
- mid-IR (Moerchen et al. 2007, Fitzgerald et al. 2007)
 - Millimeter (Maness et al. 2008)

Very Luminous Disk

$$L_{\rm IR}/L_{\rm star} \approx 10^{-3}$$

VLT/NACO Ks 2.16 µm image of HD32297 (Boccaletti et al. 2012)

Herschel Observations

- Photometry
 - PACS Scan map mode at 70, 100 & 160 μm
 - SPIRE Small map at 250, 350, & 500 μm
- Spectroscopy
 - PACS LineSpec and RangeSpec modes
 - -8 lines targeted: [OI] 63μm, CO 72 μm, H₂O 79 μm, CO 90 μm. [OI] 145 μm, [CII] 158 μm, H₂O 190 μm

PACS Spectroscopy – CII 158 μm

Lines targeted:

[OI] $63 \mu m$ $CO 72 \mu m$ $H_2O 79 \mu m$ $CO 90 \mu m$ [OI] $145 \mu m$ \rightarrow [CII] $158 \mu m$ $H_2O 190 \mu m$

Only 1 line detected – [CII] 158 µm

3.4 σ detection of [CII] 158 μm line from Herschel PACS RangeSpec mode

Lower limit of Column Density

Column density depends on the excitation temperature $T_{\rm ex}$

 T_{ex} is unknown \rightarrow we can only get a lower limit on Column Density

$$N_{\rm [CII]} > 2.5 \times 10^{-11} \, \rm cm^{-2}$$

We expect a higher value than the lower limit because NaI column density from Redfield (2007) similar $N_{\rm NaI}=2.5\times10^{-11}~{\rm cm}^{-2}$

Fit to Stellar Photosphere

Spectral type reported as A0-A5

- but this doesn't fit the photosphere well

Photosphere better fit by high extinction or a lower temperature

We use UV fluxes from Redfield et al. (in prep.)

- this breaks degeneracy
- lower temperature is best fit

Redfield+ also says UV spectrum is more consistent with A7 or A8

Best fit to the stellar photosphere (0.25-4.6 μ m) T = 7750 K

Addition of Herschel data to the SED

Addition of Herschel data to the SED

Addition of Herschel data to the SED

SED fitting with GRaTer

Blackbody fits -2 components

SED fitting – approach

- There are resolved images of the outer disk but not the inner disk
 - → 2 Phase modeling approach
 - Model the outer disk using constraints on the geometry from image → fit for composition
 - Model the inner disk with astronomical silicates
 - → fit for geometry

SED fitting – approach

Outer disk:

- Radial profile from Boccaletti et al. (2012).
- GRaTer code
- Various compositional combinations:

Astronomical silicates
Carboneous grains
Water ice
Porosity

Radial profile from Boccaletti+12

SED fitting – approach

- Inner Disk:
 - Fit residuals from outer disk model
 - Fixed composition: astronomical silicates
 - Fixed outer radius at 5 AU
 - Fixed grain size distribution power law

$$n(a)da \propto a^{-3.5}da$$

- Fit for inner radius and minimum grain size

SED Fitting - Results

SED Fitting – Results

• Outer disk:

$$a_{\min} = 2.1 \,\mu m$$

$$\kappa = -3.29$$

• Inner disk:

$$a_{\min} = 2.2 \, \mu m$$

$$r_{\min} = 1.1 AU$$

HD32297 – Conclusions

- We used imaging to constrain the geometry of the outer disk
 - Fit for composition: combination of astrosils, carbon, water ice, and porosity

- Fit the inner disk with simple disk model
 - Found inner disk at ~1-5 AU