The Blue Gray Needle: LBT AO Imaging of the HD 15115 Debris Disk

Timothy J. Rodigas

+ Phil Hinz, Andy Skemer, Kate Su, Glenn Schneider, Laird Close, Vanessa Bailey, Thayne Currie & 48 Co-authors... University of Arizona/LBTO/INAF

Rodigas et al. 2012 (ApJ)

HD 15115's debris disk

- High fractional luminosity disk (5x10^-4; Moor et al. 2006)
- Very asymmetric
- Dynamical interactions with ISM to south-east? (Debes et al. 2008)
- BLUE colors (V-H) \rightarrow small dust grains (< ~ 1 µm?) (Kalas et al. 2007, Debes et al. 2008)

Is the disk really that **blue**/asymmetric?

$\lambda > 2 \ \mu m$ imaging: what it gets you

- constrain dust grain size (esp. large grains)
- inform on geometry (large grains also asymmetric?)
- with 3 μm image, constrain water ice fraction (Inoue et al. 2008, Honda et al. 2009)
- probe for Jupiter-mass planets
- higher Strehl → higher S/N closer to star

Observations with LBT AO: new Ks and L' images

2.15 μm (PISCES)

3.8 µm (LBTI/LMIRCam)

The disk is morphologically different between 2 & 4 μ m, and between 0.5-1 & 2-4 μ m

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

arcseconds

2.5

1.5

0.5

0

-0.5

Obs

arcseconds

^{....../}NCAD/July 20, 2012

Disk Morphology: an apparent bow-shape

The PA for an un-bowed edge-on disk should remain ~constant

HD 61005 ("the moth")

HD 61005 ("the moth")

For the moth, yes

HD 61005 ("the moth")

For the moth, yes

HD 61005 ("the moth")

For the moth, yes

HD 15115

For HD 15115, unlikely

HD 61005 ("the moth")

For the moth, yes

For HD 15115, unlikely

...But is good candidate to explain east-west asymmetry

Just viewing geometry?

Just viewing geometry?

Real

Real

distance from star (arcseconds)

1

Real

Model (87° inclined ring, forward-scattering grains) 5

4

3

2

1

0

Real

4

0

4

3

Real

Model reproduces PA well (though not unique)

A SB drop-off?

Low-SNR evidence for a gap!

Evidence for a disk gap?

- For an edge-on debris disk, the SB should increase closer to the star
- A flattening/drop-off would then indicate a deficit in reflecting material (ie, less/no dust)
- SED suggests a two-component disk, with a gap near 1" (45 AU) (Moor et al. 2011b)

SED + observations pointing to a gap near 45 AU

Limits on a potential planet inside the gap

- Can use well-known chaotic zone equation to set limit on planet mass vs. semimajor axis
- Combine this with our observational constraints on planets in the system to set stringent limits

Planet constrained to $\sim 3\text{--}30~M_J$ and $\sim 34\text{--}45~AU$ orbit

Does the disk contain large grains?

The disk is ~gray, contains 1-10 μ m grains, and shows evidence for the west side containing smaller grains than the east

Putting it all together

- HD 15115's debris disk consists of both small and large grains
- Its color changes from blue to gray/red closer to the star
- The disk may have a gap near 45 AU, potentially containing a planet (but none were detected)
- The east side of the disk is probably being dynamically affected by the ISM, leaving only large grains on this side
- The system is dynamically complex, and should be imaged/modeled again in the future

A brief note on HD 32297...

See Currie et al. 2012 (+ Rodigas, Debes, Kuchner...) & Boccaletti et al. 2012 for more details

Rodigas/NCAD/July 20, 2012

Looking ahead

- Ultimately want to directly detect light from another Earth
- Learn about other Earths indirectly--by studying the circumstellar environments in which they formed (disk gaps, grain sizes, gas giant planets)
- The LBT is pushing us closer

Back-up slides

Proof of concept

(a)

(b)

Correcting for self-subtraction

The drop-off in SB is not an effect from the data reduction

Proof of concept

The need for LBT AO

- Sky is bright at $\lambda > 2 \ \mu m$
- Thermal noise becomes important
- Need large aperture + precise AO
- At the LBT (and MMT, and soon Magellan), the secondary *is* the adaptive mirror!

Talk about high Strehl...

